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The many-body Coulomb repulsive energy of strictly correlated electrons provides direct informa-
tion of the exact Hohenberg-Kohn exchange-correlation functional in the strong interaction limit.
Until now the treatment of strictly correlated electrons is based on the calculation of co-motion
functions with the help of semi-analytic formulations. This procedure is system specific and has
been limited to spherically symmetric atoms and strictly 1D systems. We develop a nested opti-
mization method which solves the Kantorovich dual problem directly, and thus facilitates a general
treatment of strictly correlated electrons for systems including atoms and small molecules.
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I. INTRODUCTION

Kohn-Sham density functional theory (KSDFT) is the
most widely used electronic structure theory for systems
with many electrons, from gas phase molecules to con-
densed matter systems in particular1,2. It is in prin-
ciple an exact theory, and is able to yield the exact
ground state energy and density using a fictitious sys-
tem of non-interacting electrons. The key component of
KSDFT is the exchange-correlation functional. Tremen-
dous progress has been made in the past three decades for
constructing approximate exchange-correlation function-
als based on the known information from the uniform
electron gas3–6. However, such approximate exchange-
correlation functionals are known to fail for strongly cor-
related systems, such as the chromium dimer7 or Mott-
Hubbard insulators8,9. Several recent studies indicate
that the construction of exchange-correlation functionals
for general strongly correlated systems can be extremely
difficult9–11.

Recently, the behavior of the exchange-correlation
functional has been revealed in the limit of strictly cor-
related electrons (SCE)12–15. The many-body Coulomb
repulsive energy of SCE determines the exact exchange-
correlation functional in the strong interaction limit,
without artificially breaking any symmetry of the system
or introducing any tunable parameters. The information
provided by the SCE limit is complementary to that pro-
vided by the uniform electron gas. For given electron
density profile, the SCE limit is described by minimizing

the many-body Coulomb interaction energy with respect
to all antisymmetric wavefunctions in a 3N dimensional
space, where N is the number of electrons in the sys-
tem, under the additional constraint that the wavefunc-
tion is consistent with the electron density12. Mathe-
matically, this daunting minimization task is an optimal
transport problem16 with Coulomb cost function13,15,17.
From physical intuition, this problem can be simplified
by introducing N co-motion functions fi : R3 → R312.
These co-motion functions characterize the relative posi-
tions of all the electrons with respect to one given elec-
tron in the SCE limit. To the extent of our knowledge, in
practice the co-motion functions can only be determined
for one dimensional systems14 and spherically symmet-
ric atoms12,13,15, with the help of semi-analytic meth-
ods. Little is known about the shape or even the ex-
istence of the co-motion functions for general systems
including small molecules. On the other hand, the opti-
mal transport problem with Coulomb cost function can
be equivalently solved by its dual formulation, called
the Kantorovich dual problem13,16,18–20. The main ad-
vantage of the Kantorovich dual problem is its poten-
tial applicability to general systems, ranging from atoms
and molecules to condensed matter systems. However,
the Kantorovich dual problem is formulated as a maxi-
mization problem with an infinite number of constraints,
which is impossible to be implemented directly. These
limitations severely restrict the applicability of the SCE
limit to systems of practical interest. In this paper,
we develop a novel method that solves the Kantorovich
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dual problem directly. We overcome the difficulty of in-
finite number of constraints via a nested optimization
approach. Our method provides a more general treat-
ment of the exchange-correlation functional in the SCE
limit for atoms and small molecules.

The rest of the paper is organized as follows: in Sec-
tion II, we briefly review the SCE limit, the optimal
transport formulation and the Kantorovich dual problem,
and present the nested optimization method for solving
the Kantorovich dual problem directly. In Section III, we
establish the applicability and accuracy of this method
for the 3D beryllium atom and a model quantum wire
system in 1D, for which accurate results can be obtained
semi-analytically using the co-motion formulation. Next,
we demonstrate the applicability of our method to a
model trimer with various number of electrons in 3D,
for which the SCE limit cannot be calculated by existing
techniques. The conclusion and future work is given in
Section IV.

II. THEORY

According to the Hohenberg-Kohn theorem1, the
ground state energy of a system can be obtained by min-
imizing the following functional with respect to the elec-
tron density ρ(r):

E[ρ] = F [ρ] +

∫
vext(r)ρ(r) dr. (1)

Here vext(r) is the external potential, and F [ρ] is the in-
ternal energy functional, which is a universal functional
of the electron density and consists of the kinetic energy
and the Coulomb repulsive energy between the electrons.
Formally F [ρ] is defined by minimizing over all the an-
tisymmetric wavefunctions Ψ which are consistent with
ρ(r) as

F [ρ] = min
Ψ→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ〉 . (2)

Here T̂ = −
∑N
i=1

1
2∆i is the kinetic energy operator and

V̂ee =
∑N
i=1

∑N
j>i|ri − rj |−1 is the Coulomb repulsive

energy operator. ∆i is the Laplacian operator on the i-
th electron. The strong interaction limit considers the
situation when the Coulomb repulsive energy dominates
over the kinetic energy, in which case the internal energy
functional can be approximated as13

F [ρ] ≈ min
Ψ→ρ

〈
Ψ
∣∣∣T̂ ∣∣∣Ψ〉+ min

Ψ→ρ

〈
Ψ
∣∣∣V̂ee∣∣∣Ψ〉

≡ Ts[ρ] + V SCE
ee [ρ].

(3)

The first term Ts[ρ] is the Kohn-Sham (KS) kinetic en-
ergy functional corresponding to a non-interacting in-
dependent particle system2. The second term V SCE

ee [ρ]
is the minimal Coulomb repulsive energy among all
antisymmetric wavefunctions which are consistent with

ρ(r), and the corresponding minimizer characterizes the
state of “strictly correlated electrons” (SCE). In terms
of KSDFT, V SCE

ee [ρ] is the sum of the Hartree energy
and the exchange correlation energy, and the exchange-
correlation functional in the SCE limit can be recovered
by

ESCE
xc [ρ] = V SCE

ee [ρ]− 1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
dr dr′. (4)

Eq. (3) allows for treating the kinetic energy func-
tional and the Coulomb repulsive energy functional on
the same footing but with different numerical techniques.
The minimization of the kinetic energy functional Ts[ρ]
gives rise to a energy minimization problem or a nonlin-
ear eigenvalue problem known as the Kohn-Sham equa-
tions. Their efficient treatment has been extensively ex-
plored in the past few decades. The minimization of the
SCE functional V SCE

ee [ρ] gives rise to an optimal trans-
port problem, for which numerical methods are still very
sparse. From the mathematical point of view, the re-
sults for the optimal transport problem are primarily con-
cerned with quadratic cost functions. Proper treatment
of the Coulomb cost function only appeared recently15

for N = 2. However, a rigorous mathematical general-
ization for systems with 3 or more electrons has not been
achieved yet.

Formally, the optimal transport problem is solved by
minimizing over all antisymmetric 3N -dimensional wave-
functions that are consistent with the given electron den-
sity ρ(r). Following physical intuition12, the optimal
transport problem can be solved by finding N co-motion
functions {f1(r), f2(r), . . . , fN (r)}, fi : R3 → R3. Each
fi(r) represents the optimal position of the i-th elec-
tron given the position of the first electron at position
r, with the natural definition that f1(r) = r. Since
the electrons are indistinguishable and distributed ac-
cording to the same density ρ(r), the co-motion func-
tions should satisfy the mass conservation constraint that
ρ(fi(r)) dfi(r) = ρ(r) dr. Then V SCE

ee [ρ] is given in terms
of the co-motion functions by12,13

V SCE
ee [ρ] =

1

N

∫
ρ(r)

N∑
i=1

N∑
j>i

1

|fi(r)− fj(r)|
dr. (5)

The co-motion functions are implicit functionals of the
electron density, and can be obtained via semi-analytic
formulations for spherical symmetric atoms12,15 and
strictly 1D systems14. However, these semi-analytic for-
mulations are system specific, and the co-motion func-
tions cannot be obtained in practice even for general sys-
tems as simple as a dimer in 3D.

As an alternative to the co-motion framework, the
Kantorovich dual formulation of the optimal transport
problem13,16,18–20 introduces an auxiliary quantity called
the Kantorovich potential u(r), in which V SCE

ee [ρ] can be
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obtained according to

V SCE
ee [ρ] =

1

N
max
u

∫
u(s)ρ(s) ds,

s.t.

N∑
i=1

u(ri) ≤
N∑
i=1

N∑
j>i

1

|ri − rj |
, ∀ {ri}Ni=1. (6)

The Kantorovich dual problem (6) is a linear program-
ming problem with respect to u, and has the potential of
treating general systems with an arbitrary electron den-
sity. However, the Kantorovich problem introduces an
infinite number of linear constraints due to the arbitrary
choice of {ri}Ni=1, and cannot be directly implemented in
practice.

Our novel method to overcome the difficulty of infinite
number of constraints in the Kantorovich problem reads
as follows. First note that the long-range asymptotic
behavior of the Kantorovich potential is

u(r) = v(r) + C, (7)

where C is a constant chosen such that the function v(r)
vanishes at infinity and satisfies13

v(r) ∼ N − 1

|r|
as |r| → ∞. (8)

Without loss of generality we refer to v(r) also as the
Kantorovich potential in the following discussion. We
introduce a functional g[v] of v(r) by

g[v] = min
{ri}

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

v(ri), (9)

where the minimization is performed over all possible
choices of the positions of the N electrons. The Kan-
torovich dual problem (6) can then be written as

V SCE
ee [ρ] =

1

N
max
v,C

∫
v(s)ρ(s) ds + C,

s.t. g[v] ≥ NC.
(10)

Here we have used the normalization condition of the
electron density,

∫
ρ(r) dr = N . Eq. (10) is a con-

strained optimization problem with one inequality con-
straint. The Karush-Kuhn-Tucker (KKT) condition21

implies that the optimal v(r) should satisfy the equal-
ity constraint

g[v] = NC. (11)

From Eq. (11) it is straightforward that the constrained
optimization problem (10) can be converted to a nested
unconstrained optimization problem by eliminating the
parameter C, resulting in

V SCE
ee [ρ] =

1

N
max
v

(∫
v(s)ρ(s) ds + g[v]

)
. (12)

We also remark that Eq. (12) can be viewed as a saddle
point problem

V SCE
ee [ρ] = max

v
min
{ri}

f [v, {ri}], (13)

with

f [v, {ri}] =

1

N

(∫
v(s)ρ(s) ds +

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

v(ri)
)
. (14)

Since v(r) has an infinite number of degrees of freedom
and {ri} has 3N degrees of freedom, the saddle point
problem (13) finds a rank-3N saddle point of the func-
tional f [v, {ri}]. To the extent of our knowledge, there
is no efficient numerical method for finding such a sad-
dle point directly in such a high dimensional space. In
practice we solve Eq. (12) via a nested unconstrained op-
timization approach.

The minimization (9) to calculate g[v] poses some hid-
den difficulties: at any set of minimizers {ri}, it must
hold that

N∑
j 6=1

r1 − rj
|r1 − rj |3

−∇v(r1) = 0. (15)

This is precisely Eq. (20) in Ref. 12. Thus, at the exact
dual potential v(r), one recovers the co-motion functions
fi(r1) by fixing r1 and minimizing (9) with respect to
r2, . . . , rN . In particular, since (15) holds for arbitrary
r1, the minimizing set {ri} is not unique. As a conse-

quence, the functional derivative δg[v]
δv (r) cannot be an-

alytically computed for the exact Kantorovich dual po-
tential v(r). Thus we use derivative-free methods22,23

to solve the outer optimization of the Kantorovich dual
problem (12). The inner optimization (9) and (15) for
calculating g[v] is a standard optimization problem and
is solved by the quasi-Newton method. Our numerical re-
sults indicate that this hybrid approach can indeed solve
atoms and small molecules with reasonable parameteri-
zation of the Kantorovich potential.

Special care should be taken when parameterizing v(r)
numerically. The long range asymptotic behavior (8) in-
dicates that the size of the computational domain needed
to represent v(r) is much larger than the size of the do-
main to represent the electron density ρ(r). For smooth
v(r), it turns out that the correct asymptotic behavior of
v(r) can be efficiently preserved by introducing a pseu-
docharge associated to v(r), denoted by m(r), i.e.,

v(r) =

∫
m(r′)

|r− r′|
dr′. (16)

The asymptotic behavior (8) translates to the following
constraint on m(r):∫

m(r) dr = N − 1. (17)



4

Compared to v(r) which decays as (N − 1)/|r| for large
|r|, physical intuition suggests that the support size of
m(r) should be much smaller and is comparable to the
support size for the electron density ρ(r), as shall be con-
firmed by our numerical results below. We remark that
the co-motion functions are discontinuous for strictly 1D
systems13,15. In particular, Eq. (15) implies that ∇v(r)
is discontinuous for these systems, and the pseudocharge
will consist of δ-functions and is difficult to discretize.
Therefore we discretize v(r) directly on a grid which
matches the asymptotic condition (8) for strictly 1D sys-
tems.

III. NUMERICAL RESULTS

a. Beryllium atom. To illustrate the performance
of the nested optimization method in practice, we first
study the beryllium atom with 4 electrons. Similar
to Ref. 12, the electron density is provided non-self-
consistently by a configuration interaction calculation
with Slater-type orbitals24,25. Specifically, ρ(r) is a
linear combination of terms rje−λ r with j = 0, 1, 2.
Since ρ(r) for beryllium is spherically symmetric, the
co-motion functions can be obtained semi-analytically12

with numerical optimization performed on the angular
part of each co-motion function. Our calculation gives
V SCE
ee [ρ] = 4× 0.812132.
For the Kantorovich dual formulation, we initially

parametrize the pseudocharge m(r) by a single Gaussian
function as

m(r;σ) =
N − 1

(2πσ2)
3/2

e−
r2

2σ2 , (18)

with the value σ left to be determined in the optimization
procedure. The corresponding Kantorovich potential has
the analytic form

v(r;σ) =

∫
m(r′)

|r− r′|
dr′ =

N − 1

|r|
erf

(
|r|√
2σ

)
. (19)

The nested optimization method gives V SCE,1
ee [ρ] = 4 ×

0.647 with σ = 0.8630, and the relative error of V SCE
ee is

20.3%. The result can be significantly improved by pa-
rameterizing the pseudocharge m by a sum of two con-
centric Gaussian functions:

m(r) = (N−1)

cos2(ϑ)
e
− r2

2σ21

(2πσ2
1)

3/2
+ sin2(ϑ)

e
− r2

2σ22

(2πσ2
2)

3/2

 ,

(20)
which yields V SCE,2

ee [ρ] = 4 × 0.7995 with parameters
σ1 = 0.4507, σ2 = 1.862, ϑ = 0.6872. The relative
error of V SCE

ee [ρ] is significantly reduced to 1.6%, which
is quite small given that only 3 parameters are employed.
The corresponding Kantorovich potential v(r) is shown
in Fig. 1, in comparison to the (numerically) exact po-
tential obtained via the co-motion formulation. As for

V SCE
ee , the potential v(r) with pseudocharge (20) agrees

remarkably well with the exact potential.

-3�r

vHrL 2 4 6 8
r

-4

-3

-2

-1

vHrL

FIG. 1. (Color online) Kantorovich potential v(r) for the
beryllium atom: co-motion formulation (thick blue solid line),
Kantorovich dual formulation with the pseudocharge m(r)
parametrized by a single Gaussian (thin magenta solid line)
and by the sum of two Gaussians (red dashed line). The green
dot-dashed line shows the asymptotic expansion (8).

b. Quantum wire. Next we study a model quantum
wire system in 1D, for which the co-motion formulation
can also be solved semi-analytically14. The system con-
sists of N = 4 electrons and the Hamiltonian reads

H = −1

2

N∑
i=1

∂2

∂x2
i

+

N∑
i=1

N∑
j>i

wb(xi − xj) +

N∑
i=1

vext(xi),

(21)
where vext(x) = 1

2ω
2x2 is a confining potential and

wb(x) =

√
π

2 b
exp

(
|x|2

4 b2

)
erfc

(
|x|
2 b

)
(22)

is the effective Coulomb interaction. By increasing the
length scale L ≡ 2ω−1/2, the system approaches the SCE
limit due to the long-range effective Coulomb interaction
wb(x). Concretely, as L increases from 4.5 to 14, the
quantum wire system transforms from a weakly corre-
lated system with 2 peaks in the electron density to a
strongly correlated system with 4 peaks in the electron
density14, which cannot be described by the local density
approximation (LDA)3 of the KS exchange-correlation
functional.

We discretize the Hamiltonian by Hermite functions.
The electron density is represented numerically on a grid
and is obtained via self-consistent field iterations (SCF).
In the Kantorovich dual formulation, we avoid the pseu-
docharge formulation for this example since the deriva-
tive v′(x) of the exact dual potential is not continu-
ous13,15 and the pseudocharge consists of δ-functions. In-
stead, we discretize v(x) directly on a uniform grid. The
number of grid points is a compromise between accurate
parametrization of v(x) and feasibility of the optimiza-
tion (12). We focus on the cases L = 6 and L = 14,
and choose the grid spacing ∆xL somewhat heuristically
as ∆x6 = 3

2 and ∆x14 = 4. We allow v(x) at the grid
points −ML,−ML + ∆xL, . . . ,ML with M6 = 7.5 and
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M14 = 28 to be determined by the optimization proce-
dure, and fix v(x) by the asymptotic formula (8) at grid
points |x| > ML. Between grid points, we use piecewise
cubic Hermite interpolation. Additionally, due to the
even symmetry v(x) = v(−x) it suffices to optimize v(x)
for x ≥ 0 only. The interval [−ML,ML] (almost) covers
the support of the electron density ρ(x) and corresponds
to the characteristic shape of ρ(x), which we try to re-
produce by the SCF iteration. As starting point for the
SCF iteration, we convolve the exact v(x) and ρ(x) from
the co-motion formulation with a Gaussian with variance
L
6 and L

4 , respectively. We use linear mixing with param-
eter λ = 0.1.

Fig. 2 shows the Kantorovich potential v(x) and the
density ρ(x) obtained via our method (after 15 and 25
SCF iterations for L = 6 and L = 14, respectively),
in comparison to the (numerically exact) co-motion for-
mulation. The Kantorovich dual formulation correctly
reproduces the strong interaction limit (L = 14) with 4
peaks in the electron density. While the results match

L=6
L=14

-6 -4 -2 0 2 4 6
2x�L

0.5

1.0

1.5

2.0

vHxL ´ L�2

(a)

L=6
L=14

-4 -2 2 4
2x�L

0.1
0.2
0.3
0.4
0.5
0.6
0.7

ΡHxL ´ L�2

(b)

FIG. 2. (Color online) Comparison of the Kantorovich po-
tential v(x) (a) and density ρ(x) (b) obtained via the “exact”
co-motion formulation14 (solid lines) and our dual formula-
tion (dashed lines), respectively. The green (upper) curves
correspond to L = 6, and the black (lower) curves correspond
to L = 14.

quite well for L = 14, one notices a deviation of the den-
sity ρ(x) from the co-motion reference for L = 6. This
observation is also reflected by the values of V SCE

ee (after
the SCF iteration) shown in Table I. Namely, the rela-

L 6 14

“exact” V SCE
ee 1.025 0.3408

dual-K V SCE
ee 0.9394 0.3381

relative error 8.4% 0.8%

TABLE I. V SCE
ee of the model quantum wire system in 1D, for

the co-motion formulation (reference) and the Kantorovich
dual formulation.

tive error of V SCE
ee for L = 14 is much smaller than for

L = 6. The deviation is likely due to numerical difficul-
ties in the maximization (12). As mentioned above, we
make use of the Nelder-Mead simplex algorithm23 which
is a derivative-free optimization method for the outer op-
timization. Unfortunately, the results shown in Fig. 2
depend quite sensitively on the parametrization of v(x),

e.g., the choices of the above ∆xL and ML. For differ-
ent choices, v(x) might acquire local maxima during the
SCF iteration. Thus further improvements of the opti-
mization (12) are required, which we leave as work for
the future.

c. Trimer molecule. Finally we apply our method
to a model trimer in 3D, for which the optimal trans-
port problem cannot be solved with known techniques
using the co-motion formulation. For simplicity, the elec-
tron density ρ(r) is given non-self-consistently by a sum
of three Gaussian profiles. The normalization of ρ(r) is
fixed by the number of electrons N = 2, 3, 4, 5, 6. An
isosurface of the electron density is shown in Fig. 3a.
We parametrize the pseudocharge by a sum of 3 Gaus-

(a)

N=6

N=5

N=4

N=3N=2

-4 -3 -2 -1 1 2 3 4

0.1

0.2

0.3

0.4

m

(b)

FIG. 3. (Color online) (a) An isosurface of the electron den-
sity ρ(r) (with normalization 1) of a model trimer. ρ(r) is
the sum of 3 Gaussian functions centered at the points 1, 2, 3,
respectively. Each Gaussian has variance 1

2
, and each point

1, 2, 3 has distance 1 from the origin. (b) Optimized pseu-
docharge m of the trimer molecule (solid blue) and density
ρ(r) as is in (a) (dashed red), plotted along the line connect-
ing 1 and 0 in (a). The values 0, 1 on the x-axis match the
corresponding points in (a).

sian functions with the same variance σ. The centers
of the Gaussian functions are located on the black lines
in Fig. 3a connecting 0 → 1, 0 → 2 and 0 → 3 re-
spectively, with equal distance R from the origin. The
variance σ and the distance R are to be determined by
the optimization procedure. The results are summarized
in Table II, including V SCE

ee . Fig. 3b shows the optimized

N 2 3 4 5 6

V SCE
ee 0.1973 0.4617 0.7584 1.0711 1.3959

σ 1.1073 0.9804 0.8313 0.7741 0.7315

R 0.2260 0.5322 0.8538 0.9062 0.9417

TABLE II. V SCE
ee of the trimer molecule, and corresponding

optimized pseudocharge parameters σ and R.

pseudocharge m(r) plotted along the line 0 → 1 as in
Fig. 3a. Along with increasing N , the magnitude of the
pseudocharge increases as required by the normalization
condition (17). The shape of the pseudocharge devel-
ops from a unimodal function for N = 2 to a bimodal
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function for N = 6, indicating growing influence of the
distance R. For large N the bimodal pseudocharge is
biased towards the negative axis around atoms 2 and 3
where the electron density is larger. The increase of R is
accompanied by a decrease of σ, and the support size of
the pseudocharge remains approximately the same as N
increases, and is comparable to the support size of ρ(r).

IV. CONCLUSION AND FUTURE WORK

In this paper we present a nested optimization method
for solving the Kantorovich dual problem to obtain the
exchange correlation functional in the SCE limit for
strongly correlated systems. With reasonable parame-
terization which preserves the asymptotic property of the
Kantorovich potential, the Kantorovich dual solution can
be obtained for atoms and small molecules. Based on the
Kantorovich dual formulation, one can combine the SCE
exchange-correlation functional with existing exchange-
correlation functionals for the uniform electron gas in or-
der to improve the performance of KSDFT for strongly
correlated systems.

Due to the difficulty in obtaining the functional deriva-

tive δg[v]
δv (r) by an analytic formula, in practice the outer

optimization of the nested optimization method is solved
by derivative-free optimization methods. However, our
numerical results indicate that the derivative-free meth-
ods may get stuck at local minima. Moreover, the
derivative-free methods are not suitable for optimizing
with respect to a large number of degrees of freedom.
More efficient numerical methods need to be developed
in order to obtain the Kantorovich dual solution for more
general systems in the future.
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